Patrick@275
|
1 |
<?xml version="1.0" encoding="utf-8"?>
|
Patrick@275
|
2 |
<publidoc version="1.0">
|
Patrick@275
|
3 |
<topic id="maths" xml:lang="fr">
|
Patrick@275
|
4 |
<head>
|
Patrick@275
|
5 |
<title>Quelques formules mathématiques</title>
|
Patrick@281
|
6 |
<subjectset>
|
Patrick@281
|
7 |
<subject>Mathématiques</subject>
|
Patrick@281
|
8 |
</subjectset>
|
Patrick@275
|
9 |
</head>
|
Patrick@275
|
10 |
|
Patrick@275
|
11 |
<section>
|
Patrick@275
|
12 |
<head>
|
Patrick@275
|
13 |
<title>Formule native</title>
|
Patrick@275
|
14 |
</head>
|
Patrick@277
|
15 |
<section>
|
Patrick@277
|
16 |
<head><title>Le dernier théorème de Fermat</title></head>
|
Patrick@277
|
17 |
<p>
|
Patrick@277
|
18 |
Il n'existe pas de nombres entiers non nuls <var>x</var>,
|
Patrick@277
|
19 |
<var>y</var> et <var>z</var> tels que :
|
Patrick@280
|
20 |
<math xml:id="fermat" display="wide">
|
Patrick@277
|
21 |
<var>x</var><sup>n</sup> + <var>y</var><sup>n</sup> = <var>z</var><sup>n</sup>
|
Patrick@277
|
22 |
</math>
|
Patrick@277
|
23 |
dès que <var>n</var> est un entier strictement supérieur à 2.
|
Patrick@277
|
24 |
</p>
|
Patrick@277
|
25 |
</section>
|
Patrick@275
|
26 |
</section>
|
Patrick@430
|
27 |
|
Patrick@275
|
28 |
<section>
|
Patrick@275
|
29 |
<head>
|
Patrick@308
|
30 |
<title>Formule en LaTeX</title>
|
Patrick@275
|
31 |
</head>
|
Patrick@308
|
32 |
<section>
|
Patrick@308
|
33 |
<head>
|
Patrick@308
|
34 |
<title>Formule dans le texte</title>
|
Patrick@308
|
35 |
</head>
|
Patrick@308
|
36 |
<p>
|
Patrick@308
|
37 |
On rappelle que la <highlight>moyenne</highlight> de <var>X</var> est
|
Patrick@435
|
38 |
le nombre : <math type="important"><latex>\overline X =
|
Patrick@308
|
39 |
\frac{1}{n}\left( {n_1 x_1 + n_2 x_2 + \dots + n_p x_p } \right)</latex></math>.
|
Patrick@308
|
40 |
</p>
|
Patrick@308
|
41 |
<p>
|
Patrick@308
|
42 |
On appelle <highlight>variance</highlight> de la série
|
Patrick@308
|
43 |
statistique <var>X</var>, le nombre :
|
Patrick@308
|
44 |
<math><latex>V\left( X \right) =
|
Patrick@430
|
45 |
\frac{1}{n}\left( {n_1 \left( {x_1 - \overline X } \right)^2
|
Patrick@308
|
46 |
+ \dots + n_p \left( {x_p - \overline X } \right)^2 }
|
Patrick@308
|
47 |
\right)</latex></math> qu'on réécrit ainsi :
|
Patrick@308
|
48 |
<math><latex>V\left( X \right) =
|
Patrick@308
|
49 |
\frac{1}{n}\sum\limits_{i = 1}^p {n_i \left( {x_i - \overline X }
|
Patrick@308
|
50 |
\right)^2 }</latex></math>.
|
Patrick@308
|
51 |
</p>
|
Patrick@308
|
52 |
<p>
|
Patrick@308
|
53 |
L'<highlight>écart type</highlight> de <var>X</var> est le nombre :
|
Patrick@308
|
54 |
<math><latex>
|
Patrick@431
|
55 |
{\textrm{s}}\left(X\right) = \sqrt{V\left(X\right)}
|
Patrick@308
|
56 |
</latex></math>
|
Patrick@308
|
57 |
</p>
|
Patrick@308
|
58 |
</section>
|
Patrick@430
|
59 |
|
Patrick@308
|
60 |
<section>
|
Patrick@308
|
61 |
<head>
|
Patrick@308
|
62 |
<title>Formule mise en évidence</title>
|
Patrick@308
|
63 |
</head>
|
Patrick@308
|
64 |
<p>
|
Patrick@308
|
65 |
Soit la fonction :
|
Patrick@308
|
66 |
<math xml:id="fonction" display="wide">
|
Patrick@308
|
67 |
<latex>f(x) = x^2 + \sqrt[3]{\frac{3x}{2y-3}}</latex>
|
Patrick@308
|
68 |
</math>
|
Patrick@308
|
69 |
</p>
|
Patrick@308
|
70 |
</section>
|
Patrick@430
|
71 |
|
Patrick@308
|
72 |
<section>
|
Patrick@308
|
73 |
<head>
|
Patrick@308
|
74 |
<title>Formule encadrée</title>
|
Patrick@308
|
75 |
</head>
|
Patrick@308
|
76 |
<p>
|
Patrick@308
|
77 |
Les transformations de Lorentz :
|
Patrick@308
|
78 |
<math xml:id="lorentz" display="box">
|
Patrick@308
|
79 |
<latex plain="true">
|
Patrick@308
|
80 |
\begin{eqnarray*}
|
Patrick@308
|
81 |
ct' & = & \frac{ct-(v/c)x}{\sqrt{1-v^2/c^2}},\\
|
Patrick@308
|
82 |
x' & = & \frac{x-(v/c)ct}{\sqrt{1-v^2/c^2}},\\
|
Patrick@308
|
83 |
y' & = & y,\\
|
Patrick@308
|
84 |
z' & = & z.
|
Patrick@308
|
85 |
\end{eqnarray*}
|
Patrick@308
|
86 |
</latex>
|
Patrick@308
|
87 |
</math>
|
Patrick@308
|
88 |
</p>
|
Patrick@308
|
89 |
</section>
|
Patrick@430
|
90 |
|
Patrick@308
|
91 |
<section>
|
Patrick@308
|
92 |
<head>
|
Patrick@308
|
93 |
<title>Formules numérotées</title>
|
Patrick@308
|
94 |
</head>
|
Patrick@308
|
95 |
<p>
|
Patrick@308
|
96 |
Une expression matricielle :
|
Patrick@308
|
97 |
<math display="numbered">
|
Patrick@308
|
98 |
<latex>
|
Patrick@308
|
99 |
\left[ \begin{array}{c} x_1 \\ x_2 \end{array} \right] =
|
Patrick@308
|
100 |
\begin{bmatrix} A & B \\ C & D \end{bmatrix}
|
Patrick@308
|
101 |
\times \left[\begin{array}{c} y_1 \\ y_2 \end{array}\right]
|
Patrick@308
|
102 |
</latex>
|
Patrick@308
|
103 |
</math>
|
Patrick@308
|
104 |
</p>
|
Patrick@308
|
105 |
<p>
|
Patrick@308
|
106 |
Une intégrale :
|
Patrick@308
|
107 |
<math display="numbered">
|
Patrick@308
|
108 |
<latex>\int_0^1 \frac{1}{\sqrt{-\ln x}} \; \mathrm dx</latex>
|
Patrick@308
|
109 |
</math>
|
Patrick@308
|
110 |
</p>
|
Patrick@308
|
111 |
</section>
|
Patrick@430
|
112 |
|
Patrick@308
|
113 |
<section>
|
Patrick@308
|
114 |
<head>
|
Patrick@308
|
115 |
<title>Formule numérotée et encadrée</title>
|
Patrick@308
|
116 |
</head>
|
Patrick@308
|
117 |
<p>
|
Patrick@308
|
118 |
Les harmoniques sphériques sont des fonctions définies sur la
|
Patrick@308
|
119 |
sphère. Ce sont les fonctions propres du laplacien bidimensionnel à
|
Patrick@308
|
120 |
symétrie sphérique,
|
Patrick@308
|
121 |
<math display="numbered-box">
|
Patrick@308
|
122 |
<latex>
|
Patrick@308
|
123 |
\left({\partial^2\over\partial\theta^2}
|
Patrick@308
|
124 |
+\cot\theta{\partial\over\partial\theta}
|
Patrick@308
|
125 |
+{1\over\sin^2\theta}{\partial^2\over\partial\varphi^2}\right)Y_\ell^m
|
Patrick@308
|
126 |
= -\ell(\ell+1)Y_\ell^m\ .
|
Patrick@308
|
127 |
</latex>
|
Patrick@308
|
128 |
</math>
|
Patrick@308
|
129 |
Les harmoniques sphériques forment un ensemble complet de fonctions des
|
Patrick@308
|
130 |
angles <math><latex>\theta</latex></math> et
|
Patrick@308
|
131 |
<math><latex>\varphi</latex></math> de sorte que toute fonction sur la
|
Patrick@308
|
132 |
sphère peut se décomposer sur une base d'harmoniques sphériques.
|
Patrick@308
|
133 |
</p>
|
Patrick@308
|
134 |
</section>
|
iinov@460
|
135 |
|
iinov@460
|
136 |
<section>
|
iinov@460
|
137 |
<head>
|
iinov@460
|
138 |
<title>Formule avec préambule</title>
|
iinov@460
|
139 |
</head>
|
iinov@460
|
140 |
<section xml:lang="en">
|
iinov@460
|
141 |
<p>
|
iinov@460
|
142 |
Let <math><latex>I_+</latex></math> denote the ideal generated by
|
iinov@460
|
143 |
the <math><latex>S_n</latex></math>-invariant homogeneous
|
iinov@460
|
144 |
polynomials of positive degree in <math>
|
iinov@460
|
145 |
<preambule><newcommand name="C">{\mathbb{C}}</newcommand></preambule>
|
iinov@460
|
146 |
<latex>\C[x_1,\dots, x_n,y_1,\dots, y_n]</latex></math> and set
|
iinov@460
|
147 |
</p>
|
iinov@460
|
148 |
<p>
|
iinov@460
|
149 |
<math display="wide">
|
iinov@460
|
150 |
<preambule><newcommand name="C">{\mathbb{C}}</newcommand></preambule>
|
iinov@460
|
151 |
<latex>R_n :=\C[\mathbf{x},\mathbf{y}] / I_+.</latex>
|
iinov@460
|
152 |
</math>
|
iinov@460
|
153 |
</p>
|
iinov@460
|
154 |
<p>
|
iinov@460
|
155 |
It is known for sometime that the bi-graded Frobenius character of
|
iinov@460
|
156 |
<math><latex>R_n</latex></math> is given by the transformation of
|
iinov@460
|
157 |
the elementary symmetric function <math><latex>e_{n}</latex></math>
|
iinov@460
|
158 |
under Bergeron-Garsia's "nabla" operator, <math><latex>\nabla
|
iinov@460
|
159 |
e_n</latex></math>. In other words, the symmetric function
|
iinov@460
|
160 |
<math><latex>\nabla e_n</latex></math> has an underlying
|
iinov@460
|
161 |
<math><latex>S_{n}</latex></math>-representation. Roughly stated,
|
iinov@460
|
162 |
<math><latex>\nabla</latex></math> is a
|
iinov@460
|
163 |
<math>
|
iinov@460
|
164 |
<preambule>
|
iinov@460
|
165 |
<newcommand name="mbb">[1]{\mathbb{#1}}</newcommand></preambule>
|
iinov@460
|
166 |
<latex>\mbb{Q}</latex></math>-linear operator defined on the ring
|
iinov@460
|
167 |
of symmetric functions <math><latex>\Lambda</latex></math> in
|
iinov@460
|
168 |
such a way that the modified Macdonald symmetric functions are
|
iinov@460
|
169 |
the eigenfunctions of <math><latex>\nabla</latex></math> with
|
iinov@460
|
170 |
prescribed eigenvalues.
|
iinov@460
|
171 |
</p>
|
iinov@460
|
172 |
</section>
|
iinov@460
|
173 |
</section>
|
Patrick@275
|
174 |
</section>
|
Patrick@275
|
175 |
</topic>
|
Patrick@275
|
176 |
</publidoc>
|