diff -r 9e229fb212ce -r 7e0c719c9526 Data/Topics/maths.xml --- a/Data/Topics/maths.xml dim. août 19 23:56:14 2018 +0200 +++ b/Data/Topics/maths.xml jeu. août 23 23:53:03 2018 +0200 @@ -132,6 +132,45 @@ sphère peut se décomposer sur une base d'harmoniques sphériques.

+ +
+ + Formule avec préambule + +
+

+ Let I_+ denote the ideal generated by + the S_n-invariant homogeneous + polynomials of positive degree in + {\mathbb{C}} + \C[x_1,\dots, x_n,y_1,\dots, y_n] and set +

+

+ + {\mathbb{C}} + R_n :=\C[\mathbf{x},\mathbf{y}] / I_+. + +

+

+ It is known for sometime that the bi-graded Frobenius character of + R_n is given by the transformation of + the elementary symmetric function e_{n} + under Bergeron-Garsia's "nabla" operator, \nabla + e_n. In other words, the symmetric function + \nabla e_n has an underlying + S_{n}-representation. Roughly stated, + \nabla is a + + + [1]{\mathbb{#1}} + \mbb{Q}-linear operator defined on the ring + of symmetric functions \Lambda in + such a way that the modified Macdonald symmetric functions are + the eigenfunctions of \nabla with + prescribed eigenvalues. +

+
+