Data/Topics/maths.xml
changeset 460 7e0c719c9526
parent 448 9bc794bf36b0
equal deleted inserted replaced
459:9e229fb212ce 460:7e0c719c9526
   130           angles <math><latex>\theta</latex></math> et
   130           angles <math><latex>\theta</latex></math> et
   131           <math><latex>\varphi</latex></math> de sorte que toute fonction sur la
   131           <math><latex>\varphi</latex></math> de sorte que toute fonction sur la
   132           sphère peut se décomposer sur une base d'harmoniques sphériques.
   132           sphère peut se décomposer sur une base d'harmoniques sphériques.
   133         </p>
   133         </p>
   134       </section>
   134       </section>
       
   135 
       
   136       <section>
       
   137         <head>
       
   138           <title>Formule avec préambule</title>
       
   139         </head>
       
   140         <section xml:lang="en">
       
   141           <p>
       
   142             Let <math><latex>I_+</latex></math> denote the ideal generated by
       
   143             the <math><latex>S_n</latex></math>-invariant homogeneous
       
   144             polynomials of positive degree in <math>
       
   145             <preambule><newcommand name="C">{\mathbb{C}}</newcommand></preambule>
       
   146             <latex>\C[x_1,\dots, x_n,y_1,\dots, y_n]</latex></math> and set
       
   147           </p>
       
   148           <p>
       
   149             <math display="wide">
       
   150               <preambule><newcommand name="C">{\mathbb{C}}</newcommand></preambule>
       
   151               <latex>R_n :=\C[\mathbf{x},\mathbf{y}] / I_+.</latex>
       
   152             </math>
       
   153           </p>
       
   154           <p>
       
   155             It is known for sometime that the bi-graded Frobenius character of
       
   156             <math><latex>R_n</latex></math> is given by the transformation of
       
   157             the elementary symmetric function <math><latex>e_{n}</latex></math>
       
   158             under Bergeron-Garsia's "nabla" operator, <math><latex>\nabla
       
   159             e_n</latex></math>. In other words, the symmetric function
       
   160             <math><latex>\nabla e_n</latex></math> has an underlying
       
   161             <math><latex>S_{n}</latex></math>-representation.  Roughly stated,
       
   162             <math><latex>\nabla</latex></math> is a
       
   163             <math>
       
   164               <preambule>
       
   165               <newcommand name="mbb">[1]{\mathbb{#1}}</newcommand></preambule>
       
   166               <latex>\mbb{Q}</latex></math>-linear operator defined on the ring
       
   167               of symmetric functions <math><latex>\Lambda</latex></math> in
       
   168               such a way that the modified Macdonald symmetric functions are
       
   169               the eigenfunctions of <math><latex>\nabla</latex></math> with
       
   170               prescribed eigenvalues.
       
   171           </p>
       
   172         </section>
       
   173       </section>
   135     </section>
   174     </section>
   136  </topic>
   175  </topic>
   137 </publidoc>
   176 </publidoc>